HSP40: References

1. Wall,D., Zylicz,M., & Georgopoulos,C. The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. J. Biol. Chem. 269, 5446-5451 (1994). [PubMed]

2. Mayer,M.P., Laufen,T., Paal,K., McCarty,J.S., & Bukau,B. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. J. Mol. Biol. 289, 1131-1144 (1999). [PubMed]

3. Kelley,W.L. & Georgopoulos,C. The T/t common exon of simian virus 40, JC, and BK polyomavirus T antigens can functionally replace the J-domain of the Escherichia coli DnaJ molecular chaperone. Proc. Natl. Acad. Sci. U. S. A 94, 3679-3684 (1997). [PubMed]

4. Tsai,J. & Douglas,M.G. A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J. Biol. Chem. 271, 9347-9354 (1996). [PubMed]

5. Fan,C.Y., Lee,S., & Cyr,D.M. Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8, 309-316 (2003). [PubMed]

6. Genevaux,P., Georgopoulos,C., & Kelley,W.L. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol. 66, 840-857 (2007). [PubMed]

7. Kampinga,H.H. & Craig,E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11, 579-592 (2010). [PubMed]

8. Qiu,X.B., Shao,Y.M., Miao,S., & Wang,L. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol. Life Sci. 63, 2560-2570 (2006). [PubMed]

9. Thomas,J.G. & Baneyx,F. Protein folding in the cytoplasm of Escherichia coli: requirements for the DnaK-DnaJ-GrpE and GroEL-GroES molecular chaperone machines. Mol. Microbiol. 21, 1185-1196 (1996). [PubMed]

10. Walsh,P., Bursac,D., Law,Y.C., Cyr,D., & Lithgow,T. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 5, 567-571 (2004). [PubMed]

11. Cui,J. et al. Construction of DnaJ-deficient mutant strain of Streptococcus pneumoniae and its preliminary study on virulence. J. Third Mil. Med. Univ. 33, 2000-2003 (2011).

12. Chukwuocha,R.U. et al. Isolation of an IgG monoclonal anti-dnaJ antibody from an immunoglobulin combinatorial library from a patient with rheumatoid arthritis. J. Rheumatol. 26, 1439-1445 (1999). [PubMed]

13. Albani,S. et al. Positive selection in autoimmunity: abnormal immune responses to a bacterial dnaJ antigenic determinant in patients with early rheumatoid arthritis. Nat. Med. 1, 448-452 (1995). [PubMed]

14. Albani,S. et al. Immune responses to the Escherichia coli dnaJ heat shock protein in juvenile rheumatoid arthritis and their correlation with disease activity. J. Pediatr. 124, 561-565 (1994). [PubMed]

15. Tukaj,S. et al. Hsp40 proteins modulate humoral and cellular immune response in rheumatoid arthritis patients. Cell Stress Chaperones 15, 555-566 (2010). [PubMed]

16. Sherman,M.Y. & Goldberg,A.L. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15-32 (2001). [PubMed]

17. Muchowski,P.J. & Wacker,J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6, 11-22 (2005). [PubMed]

18. Mitra,A., Shevde,L.A., & Samant,R.S. Multi-faceted role of HSP40 in cancer. Clin. Exp. Metastasis 26, 559-567 (2009). [PubMed]

19. Ritossa,F. Experimental activation of specific loci in polytene chromosomes of Drosophila. Exp. Cell Res. 35, 601-607 (1963). [CrossRef]

20. Ritossa,F. New puffs induced by temperature shock, DNP and salicilate in salivary chromosomes of D. melanogaster. Drosophila Information Service 37, 122-123 (1963). [Drosophila Information Service]

21. Ritossa,F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18, 571-573 (1962). [CrossRef]

22. Tissieres,A., Mitchell,H.K., & Tracy,U.M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84, 389-398 (1974). [PubMed]

23. Schlesinger,M.J., Ashburner,M., & Tissières,A. Heat shock, from bacteria to man. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1982).

24. Lindquist,S. & Craig,E.A. The heat-shock proteins. Annu. Rev. Genet. 22, 631-677 (1988). [PubMed]

25. Ciocca,D.R. & Calderwood,S.K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10, 86-103 (2005). [PubMed]

26. Ciocca,D.R., Arrigo,A.P., & Calderwood,S.K. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch. Toxicol. 87, 19-48 (2013). [PubMed]

27. Jäättelä,M. Heat shock proteins as cellular lifeguards. Ann. Med. 31, 261-271 (1999). [PubMed]

28. Macario,A.J. & Conway de,M.E. Sick chaperones, cellular stress, and disease. N. Engl. J. Med. 353, 1489-1501 (2005). [PubMed]

29. Schlesinger,M.J. Heat shock proteins. J. Biol. Chem. 265, 12111-12114 (1990). [PubMed]

30. Macario,A.J. & Conway de,M.E. The pathology of cellular anti-stress mechanisms: a new frontier. Stress 7, 243-249 (2004). [PubMed]

31. Shamovsky,I. & Nudler,E. New insights into the mechanism of heat shock response activation. Cell Mol. Life Sci. 65, 855-861 (2008). [PubMed]

32. Yochem,J. et al. Genetic analysis of two genes, dnaJ and dnaK, necessary for Escherichia coli and bacteriophage lambda DNA replication. Mol. Gen. Genet. 164, 9-14 (1978). [PubMed]

33. Hennessy,F., Cheetham,M.E., Dirr,H.W., & Blatch,G.L. Analysis of the levels of conservation of the J domain among the various types of DnaJ-like proteins. Cell Stress Chaperones 5, 347-358 (2000). [PubMed]

34. Ohtsuka,K. & Hata,M. Mammalian HSP40/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones 5, 98-112 (2000). [PubMed]

35. Cheetham,M.E. & Caplan,A.J. Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3, 28-36 (1998). [PubMed]

36. Liberek,K., Georgopoulos,C., & Zylicz,M. Role of the Escherichia coli DnaK and DnaJ heat shock proteins in the initiation of bacteriophage lambda DNA replication. Proc. Natl. Acad. Sci. U. S. A 85, 6632-6636 (1988). [PubMed]

37. Hoffmann,H.J., Lyman,S.K., Lu,C., Petit,M.A., & Echols,H. Activity of the Hsp70 chaperone complex–DnaK, DnaJ, and GrpE–in initiating phage lambda DNA replication by sequestering and releasing lambda P protein. Proc. Natl. Acad. Sci. U. S. A 89, 12108-12111 (1992). [PubMed]

38. Osipiuk,J., Georgopoulos,C., & Zylicz,M. Initiation of lambda DNA replication. The Escherichia coli small heat shock proteins, DnaJ and GrpE, increase DnaK’s affinity for the lambda P protein. J. Biol. Chem. 268, 4821-4827 (1993). [PubMed]

39. Wickner,S., Skowyra,D., Hoskins,J., & McKenney,K. DnaJ, DnaK, and GrpE heat shock proteins are required in oriP1 DNA replication solely at the RepA monomerization step. Proc. Natl. Acad. Sci. U. S. A 89, 10345-10349 (1992). [PubMed]

40. Sozhamannan,S. & Chattoraj,D.K. Heat shock proteins DnaJ, DnaK, and GrpE stimulate P1 plasmid replication by promoting initiator binding to the origin. J. Bacteriol. 175, 3546-3555 (1993). [PubMed]

41. Hupp,T.R. & Kaguni,J.M. Activation of mutant forms of DnaA protein of Escherichia coli by DnaK and GrpE proteins occurs prior to DNA replication. J. Biol. Chem. 268, 13143-13150 (1993). [PubMed]

42. Hendrick,J.P., Langer,T., Davis,T.A., Hartl,F.U., & Wiedmann,M. Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides. Proc. Natl. Acad. Sci. U. S. A 90, 10216-10220 (1993). [PubMed]

43. Wild,J., Altman,E., Yura,T., & Gross,C.A. DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli. Genes Dev. 6, 1165-1172 (1992). [PubMed]

44. Ziemienowicz,A. et al. Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity. J. Biol. Chem. 268, 25425-25431 (1993). [PubMed]

45. Schroder,H., Langer,T., Hartl,F.U., & Bukau,B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12, 4137-4144 (1993). [PubMed]

46. Shi,W., Zhou,Y., Wild,J., Adler,J., & Gross,C.A. DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J. Bacteriol. 174, 6256-6263 (1992). [PubMed]

47. Szabo,A., Korszun,R., Hartl,F.U., & Flanagan,J. A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates. EMBO J. 15, 408-417 (1996). [PubMed]

48. Lu,Z. & Cyr,D.M. The conserved carboxyl terminus and zinc finger-like domain of the co-chaperone Ydj1 assist Hsp70 in protein folding. J. Biol. Chem. 273, 5970-5978 (1998). [PubMed]

49. Ohtsuka,K., Masuda,A., Nakai,A., & Nagata,K. A novel 40-kDa protein induced by heat shock and other stresses in mammalian and avian cells. Biochem. Biophys. Res. Commun. 166, 642-647 (1990). [PubMed]

50. Pellecchia,M., Szyperski,T., Wall,D., Georgopoulos,C., & Wuthrich,K. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J. Mol. Biol. 260, 236-250 (1996). [PubMed]

51. Szyperski,T., Pellecchia,M., Wall,D., Georgopoulos,C., & Wuthrich,K. NMR structure determination of the Escherichia coli DnaJ molecular chaperone: secondary structure and backbone fold of the N-terminal region (residues 2-108) containing the highly conserved J domain. Proc. Natl. Acad. Sci. U. S. A 91, 11343-11347 (1994). [PubMed]

52. Qian,Y.Q., Patel,D., Hartl,F.U., & McColl,D.J. Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain. J. Mol. Biol. 260, 224-235 (1996). [PubMed]

53. Hill,R.B., Flanagan,J.M., & Prestegard,J.H. 1H and 15N magnetic resonance assignments, secondary structure, and tertiary fold of Escherichia coli DnaJ(1-78). Biochemistry 34, 5587-5596 (1995). [PubMed]

54. Suh,W.C. et al. Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc. Natl. Acad. Sci. U. S. A 95, 15223-15228 (1998). [PubMed]

55. Greene,M.K., Maskos,K., & Landry,S.J. Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc. Natl. Acad. Sci. U. S. A 95, 6108-6113 (1998). [PubMed]

56. Cupp-Vickery,J.R. & Vickery,L.E. Crystal structure of Hsc20, a J-type Co-chaperone from Escherichia coli. J. Mol. Biol. 304, 835-845 (2000). [PubMed]

57. Gruschus,J.M., Greene,L.E., Eisenberg,E., & Ferretti,J.A. Experimentally biased model structure of the Hsc70/auxilin complex: substrate transfer and interdomain structural change. Protein Sci. 13, 2029-2044 (2004). [PubMed]

58. Borges,J.C., Fischer,H., Craievich,A.F., & Ramos,C.H. Low resolution structural study of two human HSP40 chaperones in solution. DJA1 from subfamily A and DJB4 from subfamily B have different quaternary structures. J. Biol. Chem. 280, 13671-13681 (2005). [PubMed]

59. Ishiai,M., Wada,C., Kawasaki,Y., & Yura,T. Replication initiator protein RepE of mini-F plasmid: functional differentiation between monomers (initiator) and dimers (autogenous repressor). Proc. Natl. Acad. Sci. U. S. A 91, 3839-3843 (1994). [PubMed]

60. Cuéllar,J., Perales-Calvo,J., Muga,A., Valpuesta,J.M., & Moro,F. Structural insights into the chaperone activity of the 40-kDa heat shock protein DnaJ: binding and remodeling of a native substrate. J. Biol. Chem. 288, 15065-15074 (2013). [PubMed]

61. Svärd,M., Biterova,E.I., Bourhis,J.M., & Guy,J.E. The crystal structure of the human co-chaperone P58(IPK). PLoS. ONE. 6, e22337 (2011). [PubMed]

62. Barends,T.R. et al. Combining crystallography and EPR: crystal and solution structures of the multidomain cochaperone DnaJ. Acta Crystallogr. D. Biol. Crystallogr. 69, 1540-1552 (2013). [PubMed]

63. Kampinga,H.H. et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105-111 (2009). [PubMed]

64. Li,J., Qian,X., & Sha,B. Heat shock protein 40: structural studies and their functional implications. Protein Pept. Lett. 16, 606-612 (2009). [PubMed]

65. Li,J., Qian,X., & Sha,B. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11, 1475-1483 (2003). [PubMed]

66. Goffin,L. & Georgopoulos,C. Genetic and biochemical characterization of mutations affecting the carboxy-terminal domain of the Escherichia coli molecular chaperone DnaJ. Mol. Microbiol. 30, 329-340 (1998). [PubMed]

67. Wu,Y., Li,J., Jin,Z., Fu,Z., & Sha,B. The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40. J. Mol. Biol. 346, 1005-1011 (2005). [PubMed]

68. Hennessy,F., Nicoll,W.S., Zimmermann,R., Cheetham,M.E., & Blatch,G.L. Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci. 14, 1697-1709 (2005). [PubMed]

69. Hanai,R. & Mashima,K. Characterization of two isoforms of a human DnaJ homologue, HSJ2. Mol. Biol. Rep. 30, 149-153 (2003). [PubMed]

70. Hu,Y. et al. Expression of a novel DnaJA1 alternative splicing in human testis and sperm. Int. J. Androl. 27, 343-349 (2004). [PubMed]

71. Gonzales,P.A. et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J. Am. Soc. Nephrol. 20, 363-379 (2009). [PubMed]

72. Otero,J.H., Lizak,B., & Hendershot,L.M. Life and death of a BiP substrate. Semin. Cell Dev. Biol. 21, 472-478 (2010). [PubMed]

73. Dejgaard,K. et al. Organization of the Sec61 translocon, studied by high resolution native electrophoresis. J. Proteome Res. 9, 1763-1771 (2010). [PubMed]

74. Ushioda,R. et al. ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321, 569-572 (2008). [PubMed]

75. Hagiwara,M. et al. Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. Mol. Cell 41, 432-444 (2011). [PubMed]

76. Dong,M., Bridges,J.P., Apsley,K., Xu,Y., & Weaver,T.E. ERdj4 and ERdj5 are required for endoplasmic reticulum-associated protein degradation of misfolded surfactant protein C. Mol. Biol. Cell 19, 2620-2630 (2008). [PubMed]

77. Shen,Y., Meunier,L., & Hendershot,L.M. Identification and characterization of a novel endoplasmic reticulum (ER) DnaJ homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. J. Biol. Chem. 277, 15947-15956 (2002). [PubMed]

78. Chen,R. et al. Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J. Proteome. Res. 8, 651-661 (2009). [PubMed]

79. Prunotto,M. et al. Proteomic analysis of podocyte exosome-enriched fraction from normal human urine. J. Proteomics 82, 193-229 (2013). [PubMed]

80. Cheetham,M.E., Brion,J.P., & Anderton,B.H. Human homologues of the bacterial heat-shock protein DnaJ are preferentially expressed in neurons. Biochem. J. 284 ( Pt 2), 469-476 (1992). [PubMed]

81. Han,C. et al. HDJC9, a novel human type C DnaJ/HSP40 member interacts with and cochaperones HSP70 through the J domain. Biochem. Biophys. Res. Commun. 353, 280-285 (2007). [PubMed]

82. Syken,J., De-Medina,T., & Munger,K. TID1, a human homolog of the Drosophila tumor suppressor l(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. Proc. Natl. Acad. Sci. U. S. A 96, 8499-8504 (1999). [PubMed]

83. Ota,T. et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat. Genet. 36, 40-45 (2004). [PubMed]

84. Kurzik-Dumke,U., Debes,A., Kaymer,M., & Dienes,P. Mitochondrial localization and temporal expression of the Drosophila melanogaster DnaJ homologous tumor suppressor Tid50. Cell Stress Chaperones 3, 12-27 (1998). [PubMed]

85. Lu,B., Garrido,N., Spelbrink,J.N., & Suzuki,C.K. Tid1 isoforms are mitochondrial DnaJ-like chaperones with unique carboxyl termini that determine cytosolic fate. J. Biol. Chem. 281, 13150-13158 (2006). [PubMed]

86. Greener,T., Zhao,X., Nojima,H., Eisenberg,E., & Greene,L.E. Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. J. Biol. Chem. 275, 1365-1370 (2000). [PubMed]

87. Lemmon,S.K. Clathrin uncoating: Auxilin comes to life. Curr. Biol. 11, R49-R52 (2001). [PubMed]

88. Gruschus,J.M. et al. Structure of the functional fragment of auxilin required for catalytic uncoating of clathrin-coated vesicles. Biochemistry 43, 3111-3119 (2004). [PubMed]

89. Jiang,J. et al. Structure-function analysis of the auxilin J-domain reveals an extended Hsc70 interaction interface. Biochemistry 42, 5748-5753 (2003). [PubMed]

90. Ahle,S. & Ungewickell,E. Auxilin, a newly identified clathrin-associated protein in coated vesicles from bovine brain. J. Cell Biol. 111, 19-29 (1990). [PubMed]

91. Schroder,S. et al. Primary structure of the neuronal clathrin-associated protein auxilin and its expression in bacteria. Eur. J. Biochem. 228, 297-304 (1995). [PubMed]

92. Marsh,D.J. et al. Germline PTEN mutations in Cowden syndrome-like families. J. Med. Genet. 35, 881-885 (1998). [PubMed]

93. Koroglu,C., Baysal,L., Cetinkaya,M., Karasoy,H., & Tolun,A. DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism. Relat. Disord. 19, 320-324 (2013). [PubMed]

94. Kimura,S.H., Tsuruga,H., Yabuta,N., Endo,Y., & Nojima,H. Structure, expression, and chromosomal localization of human GAK. Genomics 44, 179-187 (1997). [PubMed]

95. Girard,M., Poupon,V., Blondeau,F., & McPherson,P.S. The DnaJ-domain protein RME-8 functions in endosomal trafficking. J. Biol. Chem. 280, 40135-40143 (2005). [PubMed]

96. Hatle,K.M. et al. MCJ/DnaJC15, an endogenous mitochondrial repressor of the respiratory chain that controls metabolic alterations. Mol. Cell Biol. 33, 2302-2314 (2013). [PubMed]

97. Shridhar,V. et al. Loss of expression of a new member of the DNAJ protein family confers resistance to chemotherapeutic agents used in the treatment of ovarian cancer. Cancer Res. 61, 4258-4265 (2001). [PubMed]

98. Botha,M., Pesce,E.R., & Blatch,G.L. The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: regulating chaperone power in the parasite and the host. Int. J. Biochem. Cell Biol. 39, 1781-1803 (2007). [PubMed]

99. Sargeant,T.J. et al. Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol. 7, R12 (2006). [PubMed]

100. Macario,A.J., Lange,M., Ahring,B.K., & Conway de,M.E. Stress genes and proteins in the archaea. Microbiol. Mol. Biol. Rev. 63, 923-67, table (1999). [PubMed]

101. Sarkar,N.K., Thapar,U., Kundnani,P., Panwar,P., & Grover,A. Functional relevance of J-protein family of rice (Oryza sativa). Cell Stress Chaperones 18, 321-331 (2013). [PubMed]

102. Miernyk,J.A. The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperones. Cell Stress Chaperones 6, 209-218 (2001). [PubMed]

103. Yamamoto,M., Maruyama,D., Endo,T., & Nishikawa,S. Arabidopsis thaliana has a set of J proteins in the endoplasmic reticulum that are conserved from yeast to animals and plants. Plant Cell Physiol. 49, 1547-1562 (2008). [PubMed]

104. Ohta,M. et al. Analysis of rice ER-resident J-proteins reveals diversity and functional differentiation of the ER-resident Hsp70 system in plants. J. Exp. Bot. 64, 5429-5441 (2013). [PubMed]

105. Nordhues,A., Miller,S.M., Muhlhaus,T., & Schroda,M. New insights into the roles of molecular chaperones in Chlamydomonas and Volvox. Int. Rev. Cell Mol. Biol. 285, 75-113 (2010). [PubMed]

106. Schroda,M. The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth. Res. 82, 221-240 (2004). [PubMed]

107. Willmund,F., Dorn,K.V., Schulz-Raffelt,M., & Schroda,M. The chloroplast DnaJ homolog CDJ1 of Chlamydomonas reinhardtii is part of a multichaperone complex containing HSP70B, CGE1, and HSP90C. Plant Physiol. 148, 2070-2082 (2008). [PubMed]

108. Silflow,C.D., Sun,X., Haas,N.A., Foley,J.W., & Lefebvre,P.A. The Hsp70 and Hsp40 chaperones influence microtubule stability in Chlamydomonas. Genetics 189, 1249-1260 (2011). [PubMed]

109. Frugis,G., Mele,G., Giannino,D., & Mariotti,D. MsJ1, an alfalfa DnaJ-like gene, is tissue-specific and transcriptionally regulated during cell cycle. Plant Mol. Biol. 40, 397-408 (1999). [PubMed]

110. Nambara,E. & McCourt,P. Protein farnesylation in plants: a greasy tale. Curr. Opin. Plant Biol. 2, 388-392 (1999). [PubMed]

111. Preisig-Müller,R., Muster,G., & Kindl,H. Heat shock enhances the amount of prenylated Dnaj protein at membranes of glyoxysomes. Eur. J. Biochem. 219, 57-63 (1994). [PubMed]

112. Caplan,A.J., Tsai,J., Casey,P.J., & Douglas,M.G. Farnesylation of YDJ1p is required for function at elevated growth temperatures in Saccharomyces cerevisiae. J. Biol. Chem. 267, 18890-18895 (1992). [PubMed]

113. Shi,Y.Y., Hong,X.G., & Wang,C.C. The C-terminal (331-376) sequence of Escherichia coli DnaJ is essential for dimerization and chaperone activity: a small angle X-ray scattering study in solution. J. Biol. Chem. 280, 22761-22768 (2005). [PubMed]

114. Sha,B., Lee,S., & Cyr,D.M. The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein Sis1. Structure 8, 799-807 (2000). [PubMed]

115. Ueguchi,C., Kakeda,M., Yamada,H., & Mizuno,T. An analogue of the DnaJ molecular chaperone in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A 91, 1054-1058 (1994). [PubMed]

116. Gur,E., Katz,C., & Ron,E.Z. All three J-domain proteins of the Escherichia coli DnaK chaperone machinery are DNA binding proteins. FEBS Lett. 579, 1935-1939 (2005). [PubMed]

117. Bird,J.G., Sharma,S., Roshwalb,S.C., Hoskins,J.R., & Wickner,S. Functional analysis of CbpA, a DnaJ homolog and nucleoid-associated DNA-binding protein. J. Biol. Chem. 281, 34349-34356 (2006). [PubMed]

118. Chae,C., Sharma,S., Hoskins,J.R., & Wickner,S. CbpA, a DnaJ homolog, is a DnaK co-chaperone, and its activity is modulated by CbpM. J. Biol. Chem. 279, 33147-33153 (2004). [PubMed]

119. Toutain,C.M. et al. The transmembrane domain of the DnaJ-like protein DjlA is a dimerisation domain. Mol. Genet. Genomics 268, 761-770 (2003). [PubMed]

120. Kelley,W.L. & Georgopoulos,C. Positive control of the two-component RcsC/B signal transduction network by DjlA: a member of the DnaJ family of molecular chaperones in Escherichia coli. Mol. Microbiol. 25, 913-931 (1997). [PubMed]

121. Clarke,D.J., Holland,I.B., & Jacq,A. Point mutations in the transmembrane domain of DjlA, a membrane-linked DnaJ-like protein, abolish its function in promoting colanic acid production via the Rcs signal transduction pathway. Mol. Microbiol. 25, 933-944 (1997). [PubMed]

122. Clarke,D.J., Jacq,A., & Holland,I.B. A novel DnaJ-like protein in Escherichia coli inserts into the cytoplasmic membrane with a type III topology. Mol. Microbiol. 20, 1273-1286 (1996). [PubMed]

123. Genevaux,P., Wawrzynow,A., Zylicz,M., Georgopoulos,C., & Kelley,W.L. DjlA is a third DnaK co-chaperone of Escherichia coli, and DjlA-mediated induction of colanic acid capsule requires DjlA-DnaK interaction. J. Biol. Chem. 276, 7906-7912 (2001). [PubMed]

124. Auger,I., Escola,J.M., Gorvel,J.P., & Roudier,J. HLA-DR4 and HLA-DR10 motifs that carry susceptibility to rheumatoid arthritis bind 70-kD heat shock proteins. Nat. Med. 2, 306-310 (1996). [PubMed]

125. Genevaux,P., Schwager,F., Georgopoulos,C., & Kelley,W.L. The djlA gene acts synergistically with dnaJ in promoting Escherichia coli growth. J. Bacteriol. 183, 5747-5750 (2001). [PubMed]

126. Ohnishi,H. et al. Legionella dumoffii DjlA, a member of the DnaJ family, is required for intracellular growth. Infect. Immun. 72, 3592-3603 (2004). [PubMed]

127. Itoh,T., Matsuda,H., & Mori,H. Phylogenetic analysis of the third hsp70 homolog in Escherichia coli; a novel member of the Hsc66 subfamily and its possible co-chaperone. DNA Res. 6, 299-305 (1999). [PubMed]

128. Kluck,C.J. et al. Structure-function analysis of HscC, the Escherichia coli member of a novel subfamily of specialized Hsp70 chaperones. J. Biol. Chem. 277, 41060-41069 (2002). [PubMed]

129. Silberg,J.J., Hoff,K.G., & Vickery,L.E. The Hsc66-Hsc20 chaperone system in Escherichia coli: chaperone activity and interactions with the DnaK-DnaJ-grpE system. J. Bacteriol. 180, 6617-6624 (1998). [PubMed]

130. Silberg,J.J., Tapley,T.L., Hoff,K.G., & Vickery,L.E. Regulation of the HscA ATPase reaction cycle by the co-chaperone HscB and the iron-sulfur cluster assembly protein IscU. J. Biol. Chem. 279, 53924-53931 (2004). [PubMed]

131. Chandramouli,K. & Johnson,M.K. HscA and HscB stimulate [2Fe-2S] cluster transfer from IscU to apoferredoxin in an ATP-dependent reaction. Biochemistry 45, 11087-11095 (2006). [PubMed]

132. Young,J.C., Agashe,V.R., Siegers,K., & Hartl,F.U. Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol. 5, 781-791 (2004). [PubMed]

133. Lu,Z. & Cyr,D.M. Protein folding activity of Hsp70 is modified differentially by the hsp40 co-chaperones Sis1 and Ydj1. J. Biol. Chem. 273, 27824-27830 (1998). [PubMed]

134. Brodsky,J.L., Lawrence,J.G., & Caplan,A.J. Mutations in the cytosolic DnaJ homologue, YDJ1, delay and compromise the efficient translation of heterologous proteins in yeast. Biochemistry 37, 18045-18055 (1998). [PubMed]

135. Cyr,D.M. Cooperation of the molecular chaperone Ydj1 with specific Hsp70 homologs to suppress protein aggregation. FEBS Lett. 359, 129-132 (1995). [PubMed]

136. Lian,H.Y. et al. Hsp40 interacts directly with the native state of the yeast prion protein Ure2 and inhibits formation of amyloid-like fibrils. J. Biol. Chem. 282, 11931-11940 (2007). [PubMed]

137. Schwartz,K., Wenger,J.W., Dunn,B., & Sherlock,G. APJ1 and GRE3 homologs work in concert to allow growth in xylose in a natural Saccharomyces sensu stricto hybrid yeast. Genetics 191, 621-632 (2012). [PubMed]

138. Kryndushkin,D.S., Smirnov,V.N., Ter-Avanesyan,M.D., & Kushnirov,V.V. Increased expression of Hsp40 chaperones, transcriptional factors, and ribosomal protein Rpp0 can cure yeast prions. J. Biol. Chem. 277, 23702-23708 (2002). [PubMed]

139. Neupert,W. Protein import into mitochondria. Annu. Rev. Biochem. 66, 863-917 (1997). [PubMed]

140. Silberstein,S., Schlenstedt,G., Silver,P.A., & Gilmore,R. A role for the DnaJ homologue Scj1p in protein folding in the yeast endoplasmic reticulum. J. Cell Biol. 143, 921-933 (1998). [PubMed]

141. Fan,C.Y., Lee,S., Ren,H.Y., & Cyr,D.M. Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function. Mol. Biol. Cell 15, 761-773 (2004). [PubMed]

142. Du,Y., Pypaert,M., Novick,P., & Ferro-Novick,S. Aux1p/Swa2p is required for cortical endoplasmic reticulum inheritance in Saccharomyces cerevisiae. Mol. Biol. Cell 12, 2614-2628 (2001). [PubMed]

143. Sadler,I. et al. A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. J. Cell Biol. 109, 2665-2675 (1989). [PubMed]

144. Feldheim,D., Rothblatt,J., & Schekman,R. Topology and functional domains of Sec63p, an endoplasmic reticulum membrane protein required for secretory protein translocation. Mol. Cell Biol. 12, 3288-3296 (1992). [PubMed]

145. Corsi,A.K. & Schekman,R. The lumenal domain of Sec63p stimulates the ATPase activity of BiP and mediates BiP recruitment to the translocon in Saccharomyces cerevisiae. J. Cell Biol. 137, 1483-1493 (1997). [PubMed]

146. Mokranjac,D., Sichting,M., Neupert,W., & Hell,K. Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J. 22, 4945-4956 (2003). [PubMed]

147. D’Silva,P.D., Schilke,B., Walter,W., Andrew,A., & Craig,E.A. J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc. Natl. Acad. Sci. U. S. A 100, 13839-13844 (2003). [PubMed]

148. Craig,E.A., Eisenman,H.C., & Hundley,H.A. Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding? Curr. Opin. Microbiol. 6, 157-162 (2003). [PubMed]

149. Gautschi,M. et al. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc. Natl. Acad. Sci. U. S. A 98, 3762-3767 (2001). [PubMed]

150. Huh,W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686-691 (2003). [PubMed]

151. Sahi,C., Lee,T., Inada,M., Pleiss,J.A., & Craig,E.A. Cwc23, an essential J protein critical for pre-mRNA splicing with a dispensable J domain. Mol. Cell Biol. 30, 33-42 (2010). [PubMed]

152. Taxis,C. et al. Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J. Biol. Chem. 278, 35903-35913 (2003). [PubMed]

153. Tizon,B., Rodriguez-Torres,A.M., & Cerdan,M.E. Disruption of six novel Saccharomyces cerevisiae genes reveals that YGL129c is necessary for growth in non-fermentable carbon sources, YGL128c for growth at low or high temperatures and YGL125w is implicated in the biosynthesis of methionine. Yeast 15, 145-154 (1999). [PubMed]

154. Nishikawa,S. & Endo,T. The yeast JEM1p is a DnaJ-like protein of the endoplasmic reticulum membrane required for nuclear fusion. J. Biol. Chem. 272, 12889-12892 (1997). [PubMed]

155. Brizzio,V. et al. Genetic interactions between KAR7/SEC71, KAR8/JEM1, KAR5, and KAR2 during nuclear fusion in Saccharomyces cerevisiae. Mol. Biol. Cell 10, 609-626 (1999). [PubMed]

156. Nishikawa,S. et al. Nep98p is a component of the yeast spindle pole body and essential for nuclear division and fusion. J. Biol. Chem. 278, 9938-9943 (2003). [PubMed]

157. Adams,I.R. & Kilmartin,J.V. Spindle pole body duplication: a model for centrosome duplication? Trends Cell Biol. 10, 329-335 (2000). [PubMed]

158. Perocchi,F. et al. Assessing systems properties of yeast mitochondria through an interaction map of the organelle. PLoS. Genet. 2, e170 (2006). [PubMed]

159. Carla Famá,M. et al. The Saccharomyces cerevisiae YFR041C/ERJ5 gene encoding a type I membrane protein with a J domain is required to preserve the folding capacity of the endoplasmic reticulum. Biochim. Biophys. Acta 1773, 232-242 (2007). [PubMed]

160. Thakur,A. et al. Structure and mechanistic insights into novel iron-mediated moonlighting functions of human J-protein cochaperone, Dph4. J. Biol. Chem. 287, 13194-13205 (2012). [PubMed]

161. Hogan,D.A., Auchtung,T.A., & Hausinger,R.P. Cloning and characterization of a sulfonate/alpha-ketoglutarate dioxygenase from Saccharomyces cerevisiae. J. Bacteriol. 181, 5876-5879 (1999). [PubMed]

162. Kozany,C., Mokranjac,D., Sichting,M., Neupert,W., & Hell,K. The J domain-related cochaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase. Nat. Struct. Mol. Biol. 11, 234-241 (2004). [PubMed]

163. Frazier,A.E. et al. Pam16 has an essential role in the mitochondrial protein import motor. Nat. Struct. Mol. Biol. 11, 226-233 (2004). [PubMed]

164. Li,Y. et al. The presequence translocase-associated protein import motor of mitochondria. Pam16 functions in an antagonistic manner to Pam18. J. Biol. Chem. 279, 38047-38054 (2004). [PubMed]

165. Mokranjac,D. et al. The import motor of the yeast mitochondrial TIM23 preprotein translocase contains two different J proteins, Tim14 and Mdj2. J. Biol. Chem. 280, 31608-31614 (2005). [PubMed]

166. Genevaux,P., Schwager,F., Georgopoulos,C., & Kelley,W.L. Scanning mutagenesis identifies amino acid residues essential for the in vivo activity of the Escherichia coli DnaJ (Hsp40) J-domain. Genetics 162, 1045-1053 (2002). [PubMed]

167. Landry,S.J. Swivels and stators in the Hsp40-Hsp70 chaperone machine. Structure 11, 1465-1466 (2003). [PubMed]

168. Karzai,A.W. & McMacken,R. A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein. J. Biol. Chem. 271, 11236-11246 (1996). [PubMed]

169. Lopez,N., Aron,R., & Craig,E.A. Specificity of class II Hsp40 Sis1 in maintenance of yeast prion [RNQ+]. Mol. Biol. Cell 14, 1172-1181 (2003). [PubMed]

170. Cajo,G.C. et al. The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the DnaK (Hsp70) chaperone cycle. J. Biol. Chem. 281, 12436-12444 (2006). [PubMed]

171. Yan,W. & Craig,E.A. The glycine-phenylalanine-rich region determines the specificity of the yeast Hsp40 Sis1. Mol. Cell Biol. 19, 7751-7758 (1999). [PubMed]

172. Wall,D., Zylicz,M., & Georgopoulos,C. The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone. J. Biol. Chem. 270, 2139-2144 (1995). [PubMed]

173. Aron,R., Lopez,N., Walter,W., Craig,E.A., & Johnson,J. In vivo bipartite interaction between the Hsp40 Sis1 and Hsp70 in Saccharomyces cerevisiae. Genetics 169, 1873-1882 (2005). [PubMed]

174. Martinez-Yamout,M., Legge,G.B., Zhang,O., Wright,P.E., & Dyson,H.J. Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. J. Mol. Biol. 300, 805-818 (2000). [PubMed]

175. Lee,S., Fan,C.Y., Younger,J.M., Ren,H., & Cyr,D.M. Identification of essential residues in the type II Hsp40 Sis1 that function in polypeptide binding. J. Biol. Chem. 277, 21675-21682 (2002). [PubMed]

176. Hu,J. et al. The crystal structure of the putative peptide-binding fragment from the human Hsp40 protein Hdj1. BMC. Struct. Biol. 8, 3 (2008). [PubMed]

177. Voos,W. & Rottgers,K. Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim. Biophys. Acta 1592, 51-62 (2002). [PubMed]

178. Orme,W., Walker,A.R., Gupta,R., & Gray,J.C. A novel plastid-targeted J-domain protein in Arabidopsis thaliana. Plant Mol. Biol. 46, 615-626 (2001). [PubMed]

179. Nicoll,W.S. et al. Approaches to the isolation and characterization of molecular chaperones. Protein Expr. Purif. 46, 1-15 (2006). [PubMed]

180. Yang,C., Miao,S., Zong,S., Koide,S.S., & Wang,L. Identification and characterization of rDJL, a novel member of the DnaJ protein family, in rat testis. FEBS Lett. 579, 5734-5740 (2005). [PubMed]

181. Pisitkun,T., Shen,R.F., & Knepper,M.A. Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. U. S. A 101, 13368-13373 (2004). [PubMed]

182. Genereux,J.C. et al. Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J. 34, 4-19 (2015). [PubMed]

183. Hattori,T. et al. Rheumatoid arthritis-related antigen 47kDa (RA-A47) is a product of colligin-2 and acts as a human HSP47. J. Bone Miner. Metab 18, 328-334 (2000). [PubMed]

184. Hattori,T. et al. Isolation and characterization of a rheumatoid arthritis-specific antigen (RA-A47) from a human chondrocytic cell line (HCS-2/8). Biochem. Biophys. Res. Commun. 245, 679-683 (1998). [PubMed]

185. Yokota,S. et al. Prevalence of HSP47 antigen and autoantibodies to HSP47 in the sera of patients with mixed connective tissue disease. Biochem. Biophys. Res. Commun. 303, 413-418 (2003). [PubMed]

186. Kakugawa,T. et al. Serum heat shock protein 47 levels are elevated in acute exacerbation of idiopathic pulmonary fibrosis. Cell Stress Chaperones 18, 581-590 (2013). [PubMed]

187. Kakugawa,T. et al. Serum heat shock protein 47 levels are elevated in acute interstitial pneumonia. BMC Pulm. Med. 14, 48 (2014). [PubMed]

188. Oka,M. et al. Autoantibody to heat shock protein Hsp40 in sera of lung cancer patients. Jpn. J. Cancer Res. 92, 316-320 (2001). [PubMed]

189. Sato,S. et al. Autoimmunity to heat shock protein 40 in ulcerative colitis. J. Int. Med. Res. 32, 141-148 (2004). [PubMed]

190. Tukaj,S. et al. Cytokines of the Th1 and Th2 type in sera of rheumatoid arthritis patients; correlations with anti-Hsp40 immune response and diagnostic markers. Acta Biochim. Pol. 57, 327-332 (2010). [PubMed]

191. Wang,Q. & Bag,J. Induction of expression and co-localization of heat shock polypeptides with the polyalanine expansion mutant of poly(A)-binding protein N1 after chemical stress. Biochem. Biophys. Res. Commun. 370, 11-15 (2008). [PubMed]

192. Corazzari,M. et al. Targeting homeostatic mechanisms of endoplasmic reticulum stress to increase susceptibility of cancer cells to fenretinide-induced apoptosis: the role of stress proteins ERdj5 and ERp57. Br. J. Cancer 96, 1062-1071 (2007). [PubMed]

193. Malone,W., Perloff,M., Crowell,J., Sigman,C., & Higley,H. Fenretinide: a prototype cancer prevention drug. Expert. Opin. Investig. Drugs 12, 1829-1842 (2003). [PubMed]

194. Saito,K., Dai,Y., & Ohtsuka,K. Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells. Exp. Cell Res. 310, 229-236 (2005). [PubMed]

195. Johnson,J.L. & Craig,E.A. An essential role for the substrate-binding region of Hsp40s in Saccharomyces cerevisiae. J. Cell Biol. 152, 851-856 (2001). [PubMed]

196. Hernandez,M.P., Chadli,A., & Toft,D.O. HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. J. Biol. Chem. 277, 11873-11881 (2002). [PubMed]

197. Hernandez,M.P., Sullivan,W.P., & Toft,D.O. The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J. Biol. Chem. 277, 38294-38304 (2002). [PubMed]

198. Michels,A.A. et al. Hsp70 and Hsp40 chaperone activities in the cytoplasm and the nucleus of mammalian cells. J. Biol. Chem. 272, 33283-33289 (1997). [PubMed]

199. Ahmad,A. et al. Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface. Proc. Natl. Acad. Sci. U. S. A 108, 18966-18971 (2011). [PubMed]

200. Clare,D.K. & Saibil,H.R. ATP-driven molecular chaperone machines. Biopolymers 99, 846-859 (2013). [PubMed]

201. Wittung-Stafshede,P., Guidry,J., Horne,B.E., & Landry,S.J. The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Biochemistry 42, 4937-4944 (2003). [PubMed]

202. Hartl,F.U. Molecular chaperones in cellular protein folding. Nature 381, 571-579 (1996). [PubMed]

203. Suzuki,H. et al. Peptide-binding sites as revealed by the crystal structures of the human Hsp40 Hdj1 C-terminal domain in complex with the octapeptide from human Hsp70. Biochemistry 49, 8577-8584 (2010). [PubMed]

204. Brehmer,D. et al. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat. Struct. Biol. 8, 427-432 (2001). [PubMed]

205. Harrison,C.J., Hayer-Hartl,M., Di,L.M., Hartl,F., & Kuriyan,J. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276, 431-435 (1997). [PubMed]

206. Liberek,K., Marszalek,J., Ang,D., Georgopoulos,C., & Zylicz,M. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. U. S. A 88, 2874-2878 (1991). [PubMed]

207. Cintron,N.S. & Toft,D. Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone pathway. J. Biol. Chem. 281, 26235-26244 (2006). [PubMed]

208. Castanie-Cornet,M.P., Bruel,N., & Genevaux,P. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim. Biophys. Acta 1843, 1442-1456 (2014). [PubMed]

209. Rothnie,A., Clarke,A.R., Kuzmic,P., Cameron,A., & Smith,C.J. A sequential mechanism for clathrin cage disassembly by 70-kDa heat-shock cognate protein (Hsc70) and auxilin. Proc. Natl. Acad. Sci. U. S. A 108, 6927-6932 (2011). [PubMed]

210. Brychzy,A. et al. Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J. 22, 3613-3623 (2003). [PubMed]

211. Shen,Y. & Hendershot,L.M. ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP’s interactions with unfolded substrates. Mol. Biol. Cell 16, 40-50 (2005). [PubMed]

212. Schröder,M., Chang,J.S., & Kaufman,R.J. The unfolded protein response represses nitrogen-starvation induced developmental differentiation in yeast. Genes Dev. 14, 2962-2975 (2000). [PubMed]

213. van Huizen,R., Martindale,J.L., Gorospe,M., & Holbrook,N.J. P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2alpha signaling. J. Biol. Chem. 278, 15558-15564 (2003). [PubMed]

214. Yan,W. et al. Control of PERK eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc. Natl. Acad. Sci. U. S. A 99, 15920-15925 (2002). [PubMed]

215. Melville,M.W. et al. The cellular inhibitor of the PKR protein kinase, P58(IPK), is an influenza virus-activated co-chaperone that modulates heat shock protein 70 activity. J. Biol. Chem. 274, 3797-3803 (1999). [PubMed]

216. Pfund,C. et al. The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J. 17, 3981-3989 (1998). [PubMed]

217. Zhong,T. & Arndt,K.T. The yeast SIS1 protein, a DnaJ homolog, is required for the initiation of translation. Cell 73, 1175-1186 (1993). [PubMed]

218. Yan,W. et al. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J. 17, 4809-4817 (1998). [PubMed]

219. Zhong,T., Luke,M.M., & Arndt,K.T. Transcriptional regulation of the yeast DnaJ homologue SIS1. J. Biol. Chem. 271, 1349-1356 (1996). [PubMed]

220. Hundley,H.A., Walter,W., Bairstow,S., & Craig,E.A. Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308, 1032-1034 (2005). [PubMed]

221. Blau,M. et al. ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nat. Struct. Mol. Biol. 12, 1015-1016 (2005). [PubMed]

222. Meyer,H.A. et al. Mammalian Sec61 is associated with Sec62 and Sec63. J. Biol. Chem. 275, 14550-14557 (2000). [PubMed]

223. Lee,D.H., Sherman,M.Y., & Goldberg,A.L. Involvement of the molecular chaperone Ydj1 in the ubiquitin-dependent degradation of short-lived and abnormal proteins in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 4773-4781 (1996). [PubMed]

224. Chapple,J.P., van der,S.J., Poopalasundaram,S., & Cheetham,M.E. Neuronal DnaJ proteins HSJ1a and HSJ1b: a role in linking the Hsp70 chaperone machine to the ubiquitin-proteasome system? Biochem. Soc. Trans. 32, 640-642 (2004). [PubMed]

225. Brodsky,J.L. & McCracken,A.A. ER protein quality control and proteasome-mediated protein degradation. Semin. Cell Dev. Biol. 10, 507-513 (1999). [PubMed]

226. Meacham,G.C. et al. The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J. 18, 1492-1505 (1999). [PubMed]

227. Zylicz,M., Ang,D., Liberek,K., & Georgopoulos,C. Initiation of lambda DNA replication with purified host- and bacteriophage-encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins. EMBO J. 8, 1601-1608 (1989). [PubMed]

228. Demoinet,E., Jacquier,A., Lutfalla,G., & Fromont-Racine,M. The Hsp40 chaperone Jjj1 is required for the nucleo-cytoplasmic recycling of preribosomal factors in Saccharomyces cerevisiae. RNA 13, 1570-1581 (2007). [PubMed]

229. Meyer,A.E., Hung,N.J., Yang,P., Johnson,A.W., & Craig,E.A. The specialized cytosolic J-protein, Jjj1, functions in 60S ribosomal subunit biogenesis. Proc. Natl. Acad. Sci. U. S. A 104, 1558-1563 (2007). [PubMed]

230. Vickery,L.E. & Cupp-Vickery,J.R. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation. Crit. Rev. Biochem. Mol. Biol. 42, 95-111 (2007). [PubMed]

231. Lutz,T., Westermann,B., Neupert,W., & Herrmann,J.M. The mitochondrial proteins Ssq1 and Jac1 are required for the assembly of iron sulfur clusters in mitochondria. J. Mol. Biol. 307, 815-825 (2001). [PubMed]

232. Hageman,J. et al. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol. Cell 37, 355-369 (2010). [PubMed]

233. Matzinger,P. An innate sense of danger. Semin. Immunol. 10, 399-415 (1998). [PubMed]

234. Bianchi,M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1-5 (2007). [PubMed]

235. Massa,M. et al. Differential recognition of heat-shock protein dnaJ-derived epitopes by effector and Treg cells leads to modulation of inflammation in juvenile idiopathic arthritis. Arthritis Rheum. 56, 1648-1657 (2007). [PubMed]

236. Pockley,A.G. & Multhoff,G. Cell stress proteins in extracellular fluids: friend or foe? Novartis Found. Symp. 291, 86-95 (2008). [PubMed]

237. Pockley,A.G., Muthana,M., & Calderwood,S.K. The dual immunoregulatory roles of stress proteins. Trends Biochem. Sci. 33, 71-79 (2008). [PubMed]

238. Asea,A. et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6, 435-442 (2000). [PubMed]

239. Srivastava,P.K. Cancer immunology. Methods 12, 115-116 (1997). [PubMed]

240. Asea,A. et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028-15034 (2002). [PubMed]

241. Multhoff,G. et al. A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int. J. Cancer 61, 272-279 (1995). [PubMed]

242. Voellmy,R. Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Crit. Rev. Eukaryot. Gene Expr. 4, 357-401 (1994). [PubMed]

243. Schiller,P. et al. Cis-acting elements involved in the regulated expression of a human HSP70 gene. J. Mol. Biol. 203, 97-105 (1988). [PubMed]

244. Akerfelt,M., Morimoto,R.I., & Sistonen,L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545-555 (2010). [PubMed]

245. Pirkkala,L., Nykanen,P., & Sistonen,L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15, 1118-1131 (2001). [PubMed]

246. Wu,C. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11, 441-469 (1995). [PubMed]

247. Ali,A., Bharadwaj,S., O’Carroll,R., & Ovsenek,N. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol. Cell Biol. 18, 4949-4960 (1998). [PubMed]

248. Zou,J., Guo,Y., Guettouche,T., Smith,D.F., & Voellmy,R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471-480 (1998). [PubMed]

249. Calderwood,S.K. et al. Signal transduction pathways leading to heat shock transcription. Sign. Transduct. Insights 2, 13-24 (2010). [PubMed]

250. Zorzi,E. & Bonvini,P. Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Cancers (Basel) 3, 3921-3956 (2011). [PubMed]

251. Leach,M.D., Tyc,K.M., Brown,A.J., & Klipp,E. Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans. PLoS. ONE. 7, e32467 (2012). [PubMed]

252. Guo,Y. et al. Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J. Biol. Chem. 276, 45791-45799 (2001). [PubMed]

253. Duina,A.A., Kalton,H.M., & Gaber,R.F. Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response. J. Biol. Chem. 273, 18974-18978 (1998). [PubMed]

254. Baler,R., Welch,W.J., & Voellmy,R. Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J. Cell Biol. 117, 1151-1159 (1992). [PubMed]

255. Abravaya,K., Myers,M.P., Murphy,S.P., & Morimoto,R.I. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev. 6, 1153-1164 (1992). [PubMed]

256. Shi,Y., Mosser,D.D., & Morimoto,R.I. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12, 654-666 (1998). [PubMed]

257. Hietakangas,V. et al. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol. Cell Biol. 23, 2953-2968 (2003). [PubMed]

258. Westerheide,S.D., Anckar,J., Stevens,S.M., Jr., Sistonen,L., & Morimoto,R.I. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323, 1063-1066 (2009). [PubMed]

259. De Bessa,S.A. et al. JDP1 (DNAJC12/Hsp40) expression in breast cancer and its association with estrogen receptor status. Int. J. Mol. Med. 17, 363-367 (2006). [PubMed]

260. Chen,H.W. et al. Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res. 68, 7428-7438 (2008). [PubMed]

261. Bardwell,J.C. et al. The nucleotide sequence of the Escherichia coli K12 dnaJ+ gene. A gene that encodes a heat shock protein. J. Biol. Chem. 261, 1782-1785 (1986). [PubMed]

262. Wegrzyn,A., Taylor,K., & Wegrzyn,G. The cbpA chaperone gene function compensates for dnaJ in lambda plasmid replication during amino acid starvation of Escherichia coli. J. Bacteriol. 178, 5847-5849 (1996). [PubMed]

263. Chenoweth,M.R., Trun,N., & Wickner,S. In vivo modulation of a DnaJ homolog, CbpA, by CbpM. J. Bacteriol. 189, 3635-3638 (2007). [PubMed]

264. Chenoweth,M.R. & Wickner,S. Complex regulation of the DnaJ homolog CbpA by the global regulators sigmaS and Lrp, by the specific inhibitor CbpM, and by the proteolytic degradation of CbpM. J. Bacteriol. 190, 5153-5161 (2008). [PubMed]

265. Radons,J. Inflammatory stress and sarcomagenesis: a vicious interplay. Cell Stress Chaperones 19, 1-13 (2014). [PubMed]

266. Visone,R. & Croce,C.M. MiRNAs and cancer. Am. J. Pathol. 174, 1131-1138 (2009). [PubMed]

267. Spizzo,R., Nicoloso,M.S., Croce,C.M., & Calin,G.A. SnapShot: MicroRNAs in Cancer. Cell 137, 586 (2009). [PubMed]

268. Mitra,A., Rostas,J.W., Dyess,D.L., Shevde,L.A., & Samant,R.S. Micro-RNA-632 downregulates DNAJB6 in breast cancer. Lab. Invest. 92, 1310-1317 (2012). [PubMed]

269. Fourie,A.M., Peterson,P.A., & Yang,Y. Characterization and regulation of the major histocompatibility complex-encoded proteins Hsp70-Hom and Hsp70-1/2. Cell Stress Chaperones 6, 282-295 (2001). [PubMed]

270. Triantafilou,M. & Triantafilou,K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 23, 301-304 (2002). [PubMed]

271. Doyle,S.L. & O’Neill,L.A. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol. 72, 1102-1113 (2006). [PubMed]

272. Cappello,F. et al. Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS. ONE. 6, e28200 (2011). [PubMed]

273. Wang,Y., Chen,L., Hagiwara,N., & Knowlton,A.A. Regulation of heat shock protein 60 and 72 expression in the failing heart. J. Mol. Cell Cardiol. 48, 360-366 (2010). [PubMed]

274. Rappa,F. et al. HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Res. 32, 5139-5150 (2012). [PubMed]

275. Choi,H.I. et al. Redox-regulated cochaperone activity of the human DnaJ homolog Hdj2. Free Radic. Biol. Med. 40, 651-659 (2006). [PubMed]

276. Mayya,V. et al. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci. Signal. 2, ra46 (2009). [PubMed]

277. Rigbolt,K.T. et al. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci. Signal. 4, rs3 (2011). [PubMed]

278. Dephoure,N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl. Acad. Sci. U. S. A 105, 10762-10767 (2008). [PubMed]

279. Kostenko,S., Jensen,K.L., & Moens,U. Phosphorylation of heat shock protein 40 (Hsp40/DnaJB1) by mitogen-activated protein kinase-activated protein kinase 5 (MK5/PRAK). Int. J. Biochem. Cell Biol. 47, 29-37 (2014). [PubMed]

280. Dai,Y.S., Xu,J., & Molkentin,J.D. The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment. Mol. Cell Biol. 25, 9936-9948 (2005). [PubMed]

281. Choudhary,C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834-840 (2009). [PubMed]

282. van Damme,P. et al. N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc. Natl. Acad. Sci. U. S. A 109, 12449-12454 (2012). [PubMed]

283. Cunnea,P.M. et al. ERdj5, an endoplasmic reticulum (ER)-resident protein containing DnaJ and thioredoxin domains, is expressed in secretory cells or following ER stress. J. Biol. Chem. 278, 1059-1066 (2003). [PubMed]

284. Oka,O.B., Pringle,M.A., Schopp,I.M., Braakman,I., & Bulleid,N.J. ERdj5 is the ER reductase that catalyzes the removal of non-native disulfides and correct folding of the LDL receptor. Mol. Cell 50, 793-804 (2013). [PubMed]

285. Boal,F., Le,P.S., Cziepluch,C., Scotti,P., & Lang,J. Cysteine-string protein isoform beta (Cspbeta) is targeted to the trans-Golgi network as a non-palmitoylated CSP in clonal beta-cells. Biochim. Biophys. Acta 1773, 109-119 (2007). [PubMed]

286. Terada,K. & Mori,M. Human DnaJ homologs dj2 and dj3, and bag-1 are positive cochaperones of hsc70. J. Biol. Chem. 275, 24728-24734 (2000). [PubMed]

287. Kho,Y. et al. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc. Natl. Acad. Sci. U. S. A 101, 12479-12484 (2004). [PubMed]

288. Gotoh,T., Terada,K., Oyadomari,S., & Mori,M. hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ. 11, 390-402 (2004). [PubMed]

289. Kanazawa,M., Terada,K., Kato,S., & Mori,M. HSDJ, a human homolog of DnaJ, is farnesylated and is involved in protein import into mitochondria. J. Biochem. 121, 890-895 (1997). [PubMed]

290. Flom,G.A., Lemieszek,M., Fortunato,E.A., & Johnson,J.L. Farnesylation of Ydj1 is required for in vivo interaction with Hsp90 client proteins. Mol. Biol. Cell 19, 5249-5258 (2008). [PubMed]

291. Weimann,M. et al. A Y2H-seq approach defines the human protein methyltransferase interactome. Nat. Methods 10, 339-342 (2013). [PubMed]

292. Frydman,J., Nimmesgern,E., Ohtsuka,K., & Hartl,F.U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111-117 (1994). [PubMed]

293. McConnell,J.R. & McAlpine,S.R. Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets. Bioorg. Med. Chem. Lett. 23, 1923-1928 (2013). [PubMed]

294. Li,J. & Sha,B. Structure-based mutagenesis studies of the peptide substrate binding fragment of type I heat-shock protein 40. Biochem. J. 386, 453-460 (2005). [PubMed]

295. Bukau,B. & Horwich,A.L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351-366 (1998). [PubMed]

296. Montgomery,D.L., Morimoto,R.I., & Gierasch,L.M. Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling. J. Mol. Biol. 286, 915-932 (1999). [PubMed]

297. Buchberger,A., Valencia,A., McMacken,R., Sander,C., & Bukau,B. The chaperone function of DnaK requires the coupling of ATPase activity with substrate binding through residue E171. EMBO J. 13, 1687-1695 (1994). [PubMed]

298. Flaherty,K.M., Luca-Flaherty,C., & McKay,D.B. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346, 623-628 (1990). [PubMed]

299. De Bock,C.E., Lin,Z., Mekkawy,A.H., Byrne,J.A., & Wang,Y. Interaction between urokinase receptor and heat shock protein MRJ enhances cell adhesion. Int. J. Oncol. 36, 1155-1163 (2010). [PubMed]

300. Tang,C.H. & Wei,Y. The urokinase receptor and integrins in cancer progression. Cell Mol. Life Sci. 65, 1916-1932 (2008). [PubMed]

301. Wei,Y. et al. Regulation of integrin function by the urokinase receptor. Science 273, 1551-1555 (1996). [PubMed]

302. Izawa,I. et al. Identification of Mrj, a DnaJ/Hsp40 family protein, as a keratin 8/18 filament regulatory protein. J. Biol. Chem. 275, 34521-34527 (2000). [PubMed]

303. Watson,E.D., Geary-Joo,C., Hughes,M., & Cross,J.C. The Mrj co-chaperone mediates keratin turnover and prevents the formation of toxic inclusion bodies in trophoblast cells of the placenta. Development 134, 1809-1817 (2007). [PubMed]

304. Hurst,D.R. et al. Breast cancer metastasis suppressor 1 (BRMS1) is stabilized by the Hsp90 chaperone. Biochem. Biophys. Res. Commun. 348, 1429-1435 (2006). [PubMed]

305. Meehan,W.J. et al. Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J. Biol. Chem. 279, 1562-1569 (2004). [PubMed]

306. Ozfiliz,P. et al. Bag-1L is a stress-withstand molecule prevents the downregulation of Mcl-1 and c-Raf under control of heat shock proteins in cisplatin treated HeLa cervix cancer cells. Asian Pac. J. Cancer Prev. 15, 4475-4482 (2014). [PubMed]

307. Takayama,S. et al. Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80, 279-284 (1995). [PubMed]

308. Sondermann,H. et al. Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291, 1553-1557 (2001). [PubMed]

309. Höhfeld,J. & Jentsch,S. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J. 16, 6209-6216 (1997). [PubMed]

310. Wang,H.G., Takayama,S., Rapp,U.R., & Reed,J.C. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc. Natl. Acad. Sci. U. S. A 93, 7063-7068 (1996). [PubMed]

311. Song,J., Takeda,M., & Morimoto,R.I. Bag1-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat. Cell Biol. 3, 276-282 (2001). [PubMed]

312. Yaglom,J.A., Gabai,V.L., & Sherman,M.Y. High levels of heat shock protein Hsp72 in cancer cells suppress default senescence pathways. Cancer Res. 67, 2373-2381 (2007). [PubMed]

313. Benjamin,C.L., Ullrich,S.E., Kripke,M.L., & Ananthaswamy,H.N. p53 tumor suppressor gene: a critical molecular target for UV induction and prevention of skin cancer. Photochem. Photobiol. 84, 55-62 (2008). [PubMed]

314. Green,D.R. At the gates of death. Cancer Cell 9, 328-330 (2006). [PubMed]

315. Qi,M., Zhang,J., Zeng,W., & Chen,X. DNAJB1 stabilizes MDM2 and contributes to cancer cell proliferation in a p53-dependent manner. Biochim. Biophys. Acta 1839, 62-69 (2014). [PubMed]

316. Ahn,B.Y. et al. Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer. Oncogene 29, 1155-1166 (2010). [PubMed]

317. Trinh,D.L., Elwi,A.N., & Kim,S.W. Direct interaction between p53 and Tid1 proteins affects p53 mitochondrial localization and apoptosis. Oncotarget 1, 396-404 (2010). [PubMed]

318. Sarkar,S. et al. hTid-1, a human DnaJ protein, modulates the interferon signaling pathway. J. Biol. Chem. 276, 49034-49042 (2001). [PubMed]

319. Soh,J. et al. Identification and sequence of an accessory factor required for activation of the human interferon gamma receptor. Cell 76, 793-802 (1994). [PubMed]

320. Pestka,S. et al. The interferon gamma (IFN-gamma) receptor: a paradigm for the multichain cytokine receptor. Cytokine Growth Factor Rev. 8, 189-206 (1997). [PubMed]

321. Edwards,K.M. & Munger,K. Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene 23, 8419-8431 (2004). [PubMed]

322. Lo,J.F. et al. Tid1, a cochaperone of the heat shock 70 protein and the mammalian counterpart of the Drosophila tumor suppressor l(2)tid, is critical for early embryonic development and cell survival. Mol. Cell Biol. 24, 2226-2236 (2004). [PubMed]

323. Kim,S.W. et al. Tid1 negatively regulates the migratory potential of cancer cells by inhibiting the production of interleukin-8. Cancer Res. 65, 8784-8791 (2005). [PubMed]

324. Sparmann,A. & Bar-Sagi,D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6, 447-458 (2004). [PubMed]

325. Kim,S.W. et al. Tid1, the human homologue of a Drosophila tumor suppressor, reduces the malignant activity of ErbB-2 in carcinoma cells. Cancer Res. 64, 7732-7739 (2004). [PubMed]

326. Zhou,B.P. & Hung,M.C. Dysregulation of cellular signaling by HER2/neu in breast cancer. Semin. Oncol. 30, 38-48 (2003). [PubMed]

327. Hayes,D.F. & Thor,A.D. c-erbB-2 in breast cancer: development of a clinically useful marker. Semin. Oncol. 29, 231-245 (2002). [PubMed]

328. Olayioye,M.A., Neve,R.M., Lane,H.A., & Hynes,N.E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 19, 3159-3167 (2000). [PubMed]

329. Karin,M. Nuclear factor-κB in cancer development and progression. Nature 441, 431-436 (2006). [PubMed]

330. Cheng,H. et al. Molecular mechanism of hTid-1, the human homolog of Drosophila tumor suppressor l(2)Tid, in the regulation of NF-kappaB activity and suppression of tumor growth. Mol. Cell Biol. 25, 44-59 (2005). [PubMed]

331. Tsai,M.F. et al. A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. J. Natl. Cancer Inst. 98, 825-838 (2006). [PubMed]

332. Lin,S.Y. et al. HLJ1 is a novel caspase-3 substrate and its expression enhances UV-induced apoptosis in non-small cell lung carcinoma. Nucleic Acids Res. 38, 6148-6158 (2010). [PubMed]

333. Kol,A., Lichtman,A.H., Finberg,R.W., Libby,P., & Kurt-Jones,E.A. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J. Immunol. 164, 13-17 (2000). [PubMed]

334. Ohashi,K., Burkart,V., Flohe,S., & Kolb,H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164, 558-561 (2000). [PubMed]

335. Binder,R.J., Vatner,R., & Srivastava,P. The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64, 442-451 (2004). [PubMed]

336. Voisine,C., Pedersen,J.S., & Morimoto,R.I. Chaperone networks: tipping the balance in protein folding diseases. Neurobiol. Dis. 40, 12-20 (2010). [PubMed]

337. Winklhofer,K.F., Tatzelt,J., & Haass,C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J. 27, 336-349 (2008). [PubMed]

338. Skovronsky,D.M., Lee,V.M., & Trojanowski,J.Q. Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol. 1, 151-170 (2006). [PubMed]

339. Rajput,A. et al. VPS35 and DNAJC13 disease-causing variants in essential tremor. Eur. J. Hum. Genet.(2014). [PubMed]

340. Bonifati,V. Genetics of Parkinson’s disease–state of the art, 2013. Parkinsonism Relat. Disord. 20 Suppl 1, S23-S28 (2014). [PubMed]

341. Foo,J.N. et al. DNAJ mutations are rare in Chinese Parkinson’s disease patients and controls. Neurobiol. Aging 35, 935-2 (2014). [PubMed]

342. Chen-Plotkin,A.S., Lee,V.M., & Trojanowski,J.Q. TAR DNA-binding protein 43 in neurodegenerative disease. Nat. Rev. Neurol. 6, 211-220 (2010). [PubMed]

343. Udan,M. & Baloh,R.H. Implications of the prion-related Q/N domains in TDP-43 and FUS. Prion 5, 1-5 (2011). [PubMed]

344. Cushman,M., Johnson,B.S., King,O.D., Gitler,A.D., & Shorter,J. Prion-like disorders: blurring the divide between transmissibility and infectivity. J. Cell Sci. 123, 1191-1201 (2010). [PubMed]

345. Fuentealba,R.A. et al. Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43. J. Biol. Chem. 285, 26304-26314 (2010). [PubMed]

346. Winkler,J., Tyedmers,J., Bukau,B., & Mogk,A. Chaperone networks in protein disaggregation and prion propagation. J. Struct. Biol. 179, 152-160 (2012). [PubMed]

347. Harms,M.B. et al. Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann. Neurol. 71, 407-416 (2012). [PubMed]

348. Udan-Johns,M. et al. Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones. Hum. Mol. Genet. 23, 157-170 (2014). [PubMed]

349. Mansson,C. et al. DNAJB6 is a peptide-binding chaperone which can suppress amyloid fibrillation of polyglutamine peptides at substoichiometric molar ratios. Cell Stress Chaperones 19, 227-239 (2014). [PubMed]

350. Orr,H.T. & Zoghbi,H.Y. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575-621 (2007). [PubMed]

351. Wetzel,R. Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J. Mol. Biol. 421, 466-490 (2012). [PubMed]

352. Mansson,C. et al. Interaction of the molecular chaperone DNAJB6 with growing amyloid-beta 42 (Abeta42) aggregates leads to sub-stoichiometric inhibition of amyloid formation. J. Biol. Chem. 289, 31066-31076 (2014). [PubMed]

353. Zinsmaier,K.E., Eberle,K.K., Buchner,E., Walter,N., & Benzer,S. Paralysis and early death in cysteine string protein mutants of Drosophila. Science 263, 977-980 (1994). [PubMed]

354. Chandra,S., Gallardo,G., Fernandez-Chacon,R., Schluter,O.M., & Sudhof,T.C. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123, 383-396 (2005). [PubMed]

355. Sharma,M., Burre,J., & Sudhof,T.C. CSPalpha promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat. Cell Biol. 13, 30-39 (2011). [PubMed]

356. Witt,S.N. Molecular chaperones, alpha-synuclein, and neurodegeneration. Mol. Neurobiol. 47, 552-560 (2013). [PubMed]

357. Kurzik-Dumke,U., Schick,C., Rzepka,R., & Melchers,I. Overexpression of human homologs of the bacterial DnaJ chaperone in the synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 42, 210-220 (1999). [PubMed]

358. Calderwood,S.K., Khaleque,M.A., Sawyer,D.B., & Ciocca,D.R. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem. Sci. 31, 164-172 (2006). [PubMed]

359. Kanazawa,Y. et al. Expression of heat shock protein (Hsp) 70 and Hsp 40 in colorectal cancer. Med. Oncol. 20, 157-164 (2003). [PubMed]

360. Isomoto,H. et al. Expression of heat shock protein (Hsp) 70 and Hsp 40 in gastric cancer. Cancer Lett. 198, 219-228 (2003). [PubMed]

361. Nishizawa,S. et al. HSP DNAJB8 controls tumor-initiating ability in renal cancer stem-like cells. Cancer Res. 72, 2844-2854 (2012). [PubMed]

362. Morita,R. et al. Heat shock protein DNAJB8 is a novel target for immunotherapy of colon cancer-initiating cells. Cancer Sci. 105, 389-395 (2014). [PubMed]

363. Abba,M.C. et al. Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. Breast Cancer Res. 6, R499-R513 (2004). [PubMed]

364. Mitra,A. et al. Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer. Breast Cancer Res. 10, R22 (2008). [PubMed]

365. Trentin,G.A., He,Y., Wu,D.C., Tang,D., & Rozakis-Adcock,M. Identification of a hTid-1 mutation which sensitizes gliomas to apoptosis. FEBS Lett. 578, 323-330 (2004). [PubMed]

366. Canamasas,I., Debes,A., Natali,P.G., & Kurzik-Dumke,U. Understanding human cancer using Drosophila: Tid47, a cytosolic product of the DnaJ-like tumor suppressor gene l2Tid, is a novel molecular partner of patched related to skin cancer. J. Biol. Chem. 278, 30952-30960 (2003). [PubMed]

367. Kurzik-Dumke,U. et al. Progression of colorectal cancers correlates with overexpression and loss of polarization of expression of the htid-1 tumor suppressor. Int. J. Mol. Med. 21, 19-31 (2008). [PubMed]

368. Clevers,H. Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480 (2006). [PubMed]

369. Lindsey,J.C. et al. Epigenetic inactivation of MCJ (DNAJD1) in malignant paediatric brain tumours. Int. J. Cancer 118, 346-352 (2006). [PubMed]

370. Wang,C.C. et al. The transcriptional factor YY1 upregulates the novel invasion suppressor HLJ1 expression and inhibits cancer cell invasion. Oncogene 24, 4081-4093 (2005). [PubMed]

371. Wang,C.C. et al. HDJ-2 as a target for radiosensitization of glioblastoma multiforme cells by the farnesyltransferase inhibitor R115777 and the role of the p53/p21 pathway. Cancer Res. 66, 6756-6762 (2006). [PubMed]

372. Patnaik,A. et al. A phase I, pharmacokinetic, and biological study of the farnesyltransferase inhibitor tipifarnib in combination with gemcitabine in patients with advanced malignancies. Clin. Cancer Res. 9, 4761-4771 (2003). [PubMed]

373. Chow,L.Q. et al. A phase I safety, pharmacological, and biological study of the farnesyl protein transferase inhibitor, lonafarnib (SCH 663366), in combination with cisplatin and gemcitabine in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 62, 631-646 (2008). [PubMed]

374. Crnogorac-Jurcevic,T. et al. Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology 129, 1454-1463 (2005). [PubMed]

375. Stark,J.L. et al. Structure and function of human DnaJ homologue subfamily a member 1 (DNAJA1) and its relationship to pancreatic cancer. Biochemistry 53, 1360-1372 (2014). [PubMed]

376. Ivanov,S.V. et al. Genomic events associated with progression of pleural malignant mesothelioma. Int. J. Cancer 124, 589-599 (2009). [PubMed]

377. Pröls,F. et al. Upregulation of the cochaperone Mdg1 in endothelial cells is induced by stress and during in vitro angiogenesis. Exp. Cell Res. 269, 42-53 (2001). [PubMed]

378. Isachenko,N. et al. High expression of shMDG1 gene is associated with low metastatic potential of tumor cells. Oncogene 25, 317-322 (2006). [PubMed]

379. Cui,Y. et al. Immunization with DnaJ (hsp40) could elicit protection against nasopharyngeal colonization and invasive infection caused by different strains of Streptococcus pneumoniae. Vaccine 29, 1736-1744 (2011). [PubMed]

380. Khan,M.N. et al. Immunogenicity and protective efficacy of DnaJ (hsp40) of Streptococcus pneumoniae against lethal infection in mice. Vaccine 24, 6225-6231 (2006). [PubMed]

381. Liu,Y. et al. Mucosal immunization with recombinant fusion protein DnaJ-DeltaA146Ply enhances cross-protective immunity against Streptococcus pneumoniae infection in mice via interleukin 17A. Infect. Immun. 82, 1666-1675 (2014). [PubMed]

382. Gusella,J.F. & MacDonald,M.E. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat. Rev. Neurosci. 1, 109-115 (2000). [PubMed]

383. Herbst,M. & Wanker,E.E. Therapeutic approaches to polyglutamine diseases: combating protein misfolding and aggregation. Curr. Pharm. Des 12, 2543-2555 (2006). [PubMed]

384. Nagai,Y. & Popiel,H.A. Conformational changes and aggregation of expanded polyglutamine proteins as therapeutic targets of the polyglutamine diseases: exposed beta-sheet hypothesis. Curr. Pharm. Des 14, 3267-3279 (2008). [PubMed]

385. Popiel,H.A. et al. Hsp40 gene therapy exerts therapeutic effects on polyglutamine disease mice via a non-cell autonomous mechanism. PLoS. ONE. 7, e51069 (2012). [PubMed]

386. Paul,S. & Mahanta,S. Association of heat-shock proteins in various neurodegenerative disorders: is it a master key to open the therapeutic door? Mol. Cell Biochem. 386, 45-61 (2014). [PubMed]

387. Wang,X. et al. The systemic amyloid precursor transthyretin (TTR) behaves as a neuronal stress protein regulated by HSF1 in SH-SY5Y human neuroblastoma cells and APP23 Alzheimer’s disease model mice. J. Neurosci. 34, 7253-7265 (2014). [PubMed]

388. Schwarzman,A.L. & Goldgaber,D. Interaction of transthyretin with amyloid beta-protein: binding and inhibition of amyloid formation. Ciba Found. Symp. 199, 146-160 (1996). [PubMed]

389. Stein,T.D. & Johnson,J.A. Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J. Neurosci. 22, 7380-7388 (2002). [PubMed]

390. Stein,T.D. et al. Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J. Neurosci. 24, 7707-7717 (2004). [PubMed]

391. Li,X., Masliah,E., Reixach,N., & Buxbaum,J.N. Neuronal production of transthyretin in human and murine Alzheimer’s disease: is it protective? J. Neurosci. 31, 12483-12490 (2011). [PubMed]

392. Batulan,Z. et al. Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis. Neurobiol. Dis. 24, 213-225 (2006). [PubMed]

393. Sharma,A., Upadhyay,A.K., & Bhat,M.K. Inhibition of Hsp27 and Hsp40 potentiates 5-fluorouracil and carboplatin mediated cell killing in hepatoma cells. Cancer Biol. Ther. 8, 2106-2113 (2009). [PubMed]

394. Zanini,C. et al. Inhibition of heat shock proteins (HSP) expression by quercetin and differential doxorubicin sensitization in neuroblastoma and Ewing’s sarcoma cell lines. J. Neurochem. 103, 1344-1354 (2007). [PubMed]

395. Debes,A., Oerding,M., Willers,R., Gobel,U., & Wessalowski,R. Sensitization of human Ewing’s tumor cells to chemotherapy and heat treatment by the bioflavonoid quercetin. Anticancer Res. 23, 3359-3366 (2003). [PubMed]

396. Lu,Y., Wei,C., & Xi,Z. Curcumin suppresses proliferation and invasion in non-small cell lung cancer by modulation of MTA1-mediated Wnt/beta-catenin pathway. In Vitro Cell Dev. Biol. Anim. 50, 840-850 (2014). [PubMed]

397. Kaur,E., Gupta,S., & Dutt,S. Clinical implications of MTA proteins in human cancer. Cancer Metastasis Rev. 33, 1017-1024 (2014). [PubMed]

398. van der Weide,K. et al. Treatment with high-dose simvastatin inhibits geranylgeranylation in AML blast cells in a subset of AML patients. Exp. Hematol. 40, 177-186 (2012). [PubMed]

399. Grabocka,E., Commisso,C., & Bar-Sagi,D. Molecular Pathways: Targeting the Dependence of Mutant RAS Cancers on the DNA Damage Response. Clin. Cancer Res.(2014). [PubMed]

400. Maity,A., Kao,G.D., Muschel,R.J., & McKenna,W.G. Potential molecular targets for manipulating the radiation response. Int. J. Radiat. Oncol. Biol. Phys. 37, 639-653 (1997). [PubMed]

401. Santucci,R., Mackley,P.A., Sebti,S., & Alsina,M. Farnesyltransferase inhibitors and their role in the treatment of multiple myeloma. Cancer Control 10, 384-387 (2003). [PubMed]

402. Karp,J.E. et al. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood 97, 3361-3369 (2001). [PubMed]

403. Van Cutsem,E. et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J. Clin. Oncol. 22, 1430-1438 (2004). [PubMed]

404. Rao,S. et al. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J. Clin. Oncol. 22, 3950-3957 (2004). [PubMed]

405. Heymach,J.V. et al. Phase II study of the farnesyl transferase inhibitor R115777 in patients with sensitive relapse small-cell lung cancer. Ann. Oncol. 15, 1187-1193 (2004). [PubMed]

406. Adjei,A.A. et al. Phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 21, 1760-1766 (2003). [PubMed]

407. Cohen,S.J. et al. Phase II and pharmacodynamic study of the farnesyltransferase inhibitor R115777 as initial therapy in patients with metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 21, 1301-1306 (2003). [PubMed]

408. Lai,Y.H. et al. The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer. Carcinogenesis 34, 1069-1080 (2013). [PubMed]

409. Wieten,L. et al. A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis. Arthritis Rheum. 62, 1026-1035 (2010). [PubMed]

410. van Eden,W., van der,Z.R., & Prakken,B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat. Rev. Immunol. 5, 318-330 (2005). [PubMed]

411. Wieten,L. et al. Cell stress induced HSP are targets of regulatory T cells: a role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Lett. 581, 3716-3722 (2007). [PubMed]

412. Koffeman,E.C. et al. Epitope-specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial. Arthritis Rheum. 60, 3207-3216 (2009). [PubMed]

413. Koishi,M. et al. Quercetin, an inhibitor of heat shock protein synthesis, inhibits the acquisition of thermotolerance in a human colon carcinoma cell line. Jpn. J. Cancer Res. 83, 1216-1222 (1992). [PubMed]

414. Yokota,S., Kitahara,M., & Nagata,K. Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells. Cancer Res. 60, 2942-2948 (2000). [PubMed]

415. Xu,F. et al. Quercetin targets cysteine string protein (CSPalpha) and impairs synaptic transmission. PLoS. ONE. 5, e11045 (2010). [PubMed]

416. Cassel,J.A., Ilyin,S., McDonnell,M.E., & Reitz,A.B. Novel inhibitors of heat shock protein Hsp70-mediated luciferase refolding that bind to DnaJ. Bioorg. Med. Chem. 20, 3609-3614 (2012). [PubMed]

417. Kityk,R., Kopp,J., Sinning,I., & Mayer,M.P. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48, 863-874 (2012). [PubMed]

418. Bertelsen,E.B., Chang,L., Gestwicki,J.E., & Zuiderweg,E.R. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. U. S. A 106, 8471-8476 (2009). [PubMed]